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1 Introduction

In complex analysis, the Poisson Integral formula provides a convenient way to
extend harmonic functions from the boundary of a domain to the interior. On the
unit disk, we have

h̃(reiθ) =
1

2π

∫ 2π

0

Pr(θ − ϕ)h(eiϕ) dϕ

As it happens, h̃ is also harmonic, and, for piecewise continuous boundary values
h, the radial limit of h̃ is the average of the right and left hand limits of h. The
Poisson kernel Pr(θ) is a family of functions indexed by radius, which are domain
specific. On the unit disk, we have

Pr(θ) =
1− |z|2

|1− z|2
.

It would be handy if such a formula existed for γ-harmonic functions on graphs.
Even the notion of radial limit is difficult to generalize to all graphs, so we will
restrict our attention in this paper to a certain subset of graphs which behave
nicely. As a preview, our goal is a solution to the Dirichlet problem, and an
analogue to the Poisson Integral formula, on infinite trees.

2 Preliminaries

2.1 Graphs and Networks

Definition 2.1. An infinite graph, although throughout this paper we will simply
refer to graphs for simplicity’s sake, is a double G = (V,E), where V is an infinite
set of vertices, and E ⊂ V × V is a collection of pairs of vertices. One vertex
v0 ∈ V is designated as the origin.
Definition 2.2. A network Γ = (G, γ) is a graph G coupled with a function
γ : E → R+ representing the conductivities of connections in an electrical network.
We require that γ be bounded above and below, thus, 0 < c ≤ γ ≤ C <∞.
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2.2 Γ-Harmonic Functions

Definition 2.3. A potential function, or voltage function, is simply a function
u : V → R. This is intended to model voltages on an electrical network, with the
weightings representing conductivities.
Definition 2.4. A voltage function u is called γ-harmonic if, for each interior
vertex v, we have ∑

(v,v′)∈Gint×G

γ(vv′)(u(v)− u(v′)) = 0.

The sum over the Cartesian product makes sense if we simply define γ = 0 on
pairs of vertices that do not form edges. Such a function satisfies the physical law
that current should neither be created nor destroyed by the system. Current can
enter and exit via boundary nodes, but not interior nodes. Harmonic functions
satisfy two useful simple properties:
Lemma 2.5 (Mean Value Property). If v is an interior vertex of degree k, and
u is a γ-harmonic function, then

u(v) =
1∑

v′∼v γ(vv′)

∑
v′∼v

γ(vv′)u(v′),

where v′ ∼ v means that v′ is a neighbor of v. That is, the value of a harmonic
function at a point is a weighted average of its values at neighboring points.

Proof. The proof is a simple rearrangement of the expression for the definition of
γ-harmonicity.

Corollary 2.6. No interior point of a γ-harmonic function can be a local ex-
tremum of the function.

Proof. If v is a local maximum (resp. minimum), then u(v) is greater (resp. lower)
than each u(v′), violating the mean value property.

Lemma 2.7 (Maximum Principle). If Γ is a graph with boundary (not neces-
sarily finite), and u is a γ-harmonic function whose boundary values lie in the
interval [a, b] and whose limits along infinite paths lie in the interval [c, d], then u
takes values exclusively in the interval [min{a, c},max{b, d}]. That is, u takes its
maximum and minimum on the boundary, or at infinity.

Proof. Suppose without loss of generality that u(v0) < a ≤ c. Either v0 is a
local minimum, such that all its neighbors v′ verify u(v0) ≤ u(v′), or one of its
neighbors takes a lower value. We can continue this argument to produce a path
of decreasing values. This path must terminate in the interior. It cannot end
at the boundary, by assumption on the values at the boundary. And it cannot
have infinite length, again by assumption. So it terminates at a local minimum.
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But γ-harmonic functions do not have local extrema in the interior, so this is a
contradiction. The argument against a maximum is exactly symmetric.

3 Paths and Boundaries

Definition 3.1. A path p in G is a sequence of vertices {vn}, beginning at the
origin of G such that each pair of adjacent vertices v0v1, v1v2 · · · ∈ E. The path
may be self-intersecting, in the sense that we do not require that ∀i 6= j, vi 6= vj .
These paths, then, are essentially random walks on the graph.

Definition 3.2. We say that a path p escapes if, for each M ∈ N, the number
of edges in p at distance of at most M from v0, counting multiplicity, is finite.

Lemma 3.3. If p̂ has no recurring edges, it escapes.

Proof. The proof of the latter claim is easy. Since each vertex has finite degree,
the number of edges within M of v0 is finite, and since they cannot be reused, p̂
eventually leaves the region.

We want a way to categorize the infinite paths, in terms of how they behave at
infinity. Thus, we define a relation between two paths, which we will prove is an
equivalence under certain circumstances.

Definition 3.4. Two paths p and q are related by ∼, and we write p ∼ q, if p
and q share infinitely many edges.

Lemma 3.5. If G is a tree, or a graph with no cycles, and E denotes the set of
all escaping paths, then ∼ is an equivalence relation on E.

Proof. Let p, q ∈ E. Clearly p ∼ p, and p ∼ q ⇐⇒ q ∼ p. Thus, we only need
show that ∼ is transitive. Suppose s ∈ E satisfies p ∼ s, and s ∼ q. We need to
show p ∼ q.
Observe that if a path b shares two arbitrarily distant edges e1 and e2 with another
path a, then a and b must coincide at all intermediate edges. If they do not, and
there is more than one route from e1 to e2, then concatenating the two routes
produces a cycle, which is impossible.
Now, given that s is an escaping infinite path, note that all infinite paths covered
by s are similar to each other. Suppose there are two such paths a and b with
only finitely many edges in common. Then, by the acyclicity of G, a and b contain
edges at arbitrary distance from each other (if both edges are D from the origin,
then they are 2D from each other). But because s is connected, and begins at the
origin and not at infinity, there must be infinitely many traversals through the
origin connecting edges of a and b at successively greater distances.
Now, by assumption, p ∼ s and q ∼ s, so both p and q cover infinite subpaths
which are also covered by s. Thus, both p and q contain edges arbitrarily far along
the same infinite subpath of s. Pick two edges p1 and p2 contained in p at very
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great distance from each other, far enough apart that we can find two edges in q
arbitrarily far apart from each other, both within the unique route connecting p1
and p2. Then p and q coincide at arbitrarily many edges along that unique route,
as required.

Henceforth, we work exclusively on trees. Now, the relation ∼ effects a partition
of E into equivalence classes. By the following lemma, we can represent each class
by a unique special element.

Lemma 3.6. Each equivalence class [p] of E generated by ∼ contains exactly one
path p̂ with no recurrent edges.

Proof. Each element of [p] contains edges arbitrarily far from the origin. For the
edges sufficiently distant, there is a unique, direct path with no recurrent edges
connecting them to the origin. Take the countable union of all these unique paths;
it is unique, by the acyclicity of the tree. Designate this unique non-recurrent path
by p̂.

We denote the set of all representative paths, corresponding exactly to the set of
equivalence classes, by Ê. Because all the paths are escaping to infinity, and they
are all effectively distinct at infinity, it makes sense to consider this set of paths
to be the boundary of the graph. Thus, we will often write ∂G or ∂Γ to mean
Ê. If we are going to use an integral formula of some kind to integrate along the
boundary of the graph, we need an ordering of the paths in the boundary for that
to make any sense.

Lemma 3.7. Let G be a planar infinite tree, with origin v0. Then there is a
well-ordering of the set of non-recurrent infinite paths Ê.

Proof. Beginning at the origin, select one edge incident to v0 to be the left-most
edge. Proceed along this edge, and at each vertex, turn left. The path produced
in this way will be the infimum of E with respect to our ordering. We write p ≤ q
if, at the vertex where p and q diverge, q follows an edge to the right of p. If p and
q never diverge, then p = q. Given any nonempty subset of E, there is a leftmost
element, produced by simply following, at each vertex, the leftmost edge contained
in a path of the subset. Thus, ≤ defined in this way is a well-ordering.

We can also associate to the boundary a pseudometric.

Definition 3.8. Let p and q be two finite paths from the origin, both of length
i. The well-ordering of infinite paths from the origin also provides an ordering of
finite paths, so denote by p − q the number of paths s satisfying p < s ≤ q. We
define the standard metric on paths in ∂Γ to be

d(p̂, q̂) = ‖p− q‖ = lim
i→∞

(pi − qi)/|Ti|,
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where |Ti| is the number of subpaths of length i, or, equivalently, the number of
vertices in Γ at distance i from the origin. If ‖p− q‖ > 0 and p ≤ q, then we write
p < q.

Definition 3.9. A continuous path numbering ζ : ∂Γ → R is function which is
both strictly increasing with respect to the standard ordering on ∂Γ, and contin-
uous with respect to the standard metric. By strictly increasing, we mean that
p < q =⇒ ζ(p) < ζ(q).

Lemma 3.10. The image of a continuous path numbering f is an interval.

Proof. The proof is nearly identical to the Intermediate Value Theorem. Let f(a)
and f(b) be the least and greatest values of f . Let f(a) ≤ u ≤ f(b). We prove
that there is a value c such that f(c) = u. Indeed, let c ∈ S = sup{x|f(a) ≤
f(x) ≤ u}. Clearly c ∈ ∂Γ, because ∂Γ is complete. Suppose for contradiction
that f(c)− u > 0. Then since f is continuous, there is δ > 0 such that |x− c| <
δ =⇒ |f(x)−f(c)| > f(c)−u. That is, f(x) > u for x ∈ (c− δ, c+ δ. Thus, c− δ
is an upper bound for S. On the other hand, if we suppose that f(c) < u, then
u− f(c) > 0, and we can again find x such that f(x) < u, but x ∈ (c− δ, c+ δ).
This is again a contradiction.

Corollary 3.11. It follows, from the fact that translations and dilations are
continuous, that if there exists a continuous path numbering from ∂Γ to some
non-degenerate interval, there exists a continuous path numbering from ∂Γ to any
non-degenerate interval.

4 Measures on ∂Γ

In this section, I develop two different measures on the boundary of Γ. The first
is very simple, deriving directly from the continuous path numberings discussed
above.

Definition 4.1. The uniform measure µ on ∂Γ with respect to a continuous path
numbering ζis simply the Lebesgue measure defined with respect to the image of
ζ. Thus, if E ⊂ ∂Γ, µ(E) = λ(ζ(E)).

The second measure is a probability measure on infinite paths, for which we must
first define a σ-algebra.

Proposition 4.2. The set of all random walks beginning at an arbitrary vertex v,
denoted X, admits an algebra Ev consisting of the sets E of random walks which
begin with some fixed finite sequence of moves. That is, to each finite sequence S
of moves beginning at v corresponds a set ES of random walks which begin with
that sequence, and the collection of all such sets generates an algebra closed under
finite unions and complements.
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Proposition 4.3. The probability measure νv is a finite premeasure on Ev.
Define ES as above, then the probability measure of ES is

νv(ES) =
∏
vi∈S

γ(vivi+1)∑
v′∼vi γ(v′vi)

.

That is, at each vertex, multiply by the weighted probability of following the next
edge in S. In other words, νv(ES) is the probability that a random walk beginning
at the origin will follow the path S. We define ν on the sets which are generated
by finite unions of sets like ES by simply requiring that it be finitely additive over
disjoint unions. This is well-defined, because, for any two generating sets E1, E2,
either E1 ⊂ E2, E2 ⊂ E1, or E1∩E2 = ∅. That it is indeed a probability measure
follows from the observation that

∂Γ =

d(v)⋃
1

Eei ,

where {ei} is the set of edges immediately incident to v0, and

νv(X) =

d(v)∑
1

νv(Eei) =

d(v)∑
1

γ(vvi)∑d(v)
1 γ(vvi)

= 1.

Lemma 4.4. Denote by Fv the σ-algebra generated by Ev. If T ⊂ ∂Γ = Ê is a
set of escaping paths which is determined by its finite truncations, then T ∈ Fv.

Proof. We will generate T from the basis elements of Fv. Let Tn be the set of
vertices in T at distance n from v, and let xi be a vertex in that set. The set of all
paths from v that meet xi at their jth step is clearly in Fv, denote it by M j

i (n).
Now, take the countable union of these sets over j:

Mi(n) =

∞⋃
j=1

M j
i (n) ∈ Fv.

Now, take the countable (actually, finite) union of the Mi(n)’s over all vertices
xi ∈ Tn:

M(n) =

∞⋃
i=1

Mi(n) ∈ Fv.

This set M is actually specific to the index n, so we now take the countable
intersection over n:

M =

∞⋂
n=1

M(n) ∈ Fv.
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This is the set of all paths which meet a point in every subset Tn at some point
in their meanderings. Some of these paths spend arbitrarily long near the origin,
so we need to be able to excise them from our set. But we can do this, because
the set of paths that do not escape, EC , is in F. Indeed, take the countable union
(over K) of the countable intersections (over n) of the complements of sets of
paths that end up more than K steps away from the origin after n steps. So,

T =

∞⋂
n=1

M(n) \EC ∈ Fv.

Lemma 4.5. The premeasure ν(Ev) as defined above extends uniquely to a mea-
sure on Fv.

Proof. Because Fv is generated by Ev, we can apply [1] p. 30, Theorem 1.14.
Thus, there exists a unique extension of ν to Fv, which we also call ν.

We can relate the two measures to each other by absolute continuity, defined in
[1], p. 83.

Lemma 4.6. The measure ν is absolutely continuous with respect to µ: ν � µ.

Proof. Suppose for the first case that µ(E) = 0. Then we can cover E with
intervals of arbitrarily small total length. These intervals correspond to subtrees
of Γ which “cover” the paths in E, which we can begin arbitrarily far from v0
and still have cover the tails of p̂ ∈ E. Fix ε > 0, this fixes a covering of E by
intervals and subtrees. Let x be the base of a subtree Tε which covers the tail of
some p̂ ∈ E. Each infinite walk which is equivalent to a path in Tε meets x a final
time, otherwise it does not escape.
If we lower ε enough that Tε is now one level below where it was, such that we
have eliminated all but one exiting edges from x as a possibility, then not all the
paths which met x will survive in the smaller Tε. The proportion of those which do
is precisely the ratio of the chosen edge’s conductivity to the total conductivities
out of x. Because γ is bounded above and below, and Γ is locally finite, this
proportion is bounded above by some q < 1. Taking ε arbitrarily small, we repeat
this process infinitely many times. Finally, the total measure of all the paths
which survive the process, having been multiplied by qn at the most, goes to 0.

Corollary 4.7. The Radon Nikodym theorem ([1] p. 84) guarantees the existence
of a function f such that

ν(E) =

∫
E

f(x) dµ.

This function is a probability density function, and we write Pv(x).
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Lemma 4.8. The function Pv(x), which is in fact a family of functions indexed
by vertices, is γ-harmonic with respect to v except on at most a µ-null set.

Proof. Let E be a subset of ∂Γ. Then we have

νv(E) =

∫
E

Pv(x) dx =
1

k

∑
v′∼v

νv′(E) =
1

k

∫
E

∑
v′∼v

Pv′(x) dx

If the sum of the density functions of the neighboring vertices differs from Pv(x)
on a set of nonzero measure, then we set E equal to that set, and violate the
foregoing equality.

Lemma 4.9. Let p̂ ∈ Ê, and index the vertices of p̂ by {vi}. Then

lim
i→∞

Pvi(ξ(p̂)) =∞.

Proof. Take vi far out in the path. It is the apex of a subtree of the graph, which
defines an interval in ∂Γ. Call this interval Ii. Now form the interval Ij , where
j > i, and Ij ⊂ Ii. The ν-measure of [0, 1]− Ii from vj is nonzero but small, call
it q > 0. Incrementing j by 1, we multiply q by the non-unity probability of a
random walk starting at vj+1 moving to vj ; this probability is bounded by α < 1,
from the bounds on γ. Thus, as j → ∞, q → 0. And as i → ∞, Ii → ξ(p̂). In
other words, ν tends to vanish on all but a single point of [0, 1]. Because the total
measure is 1, however, this means that Pvi →∞.

We are now ready, after much trial and travail, to state the main result.

Theorem 4.10. Let Γ be an expansionary tree with conductivities bounded above
and below, and let φ : [0, 1] → R be the piecewise continuous function assigning
values to the boundary at infinity. Then there exists a unique γ-harmonic voltage
function u such that for each path p̂ = {vi} ∈ Ê,

lim
i→∞

u(vi) = φ(ξ(p̂))

wherever φ is continuous. Furthermore, the explicit expression for u is

u(v) = h̃(v) =

∫ 1

0

Pv(x)φ(x) dµ.

Proof. That h̃(v) is γ-harmonic follows immediately from Proposition 3.4. We
only need to show the limit. Let x0 be a point in [0, 1] where φ is continuous.
Because Pv behaves like a Dirac δ-function, for every ε > 0 there is extremely
large N such that for n > N , wherever Pvn(x0) > ε, φ is continuous. Call the
corresponding interval Iε. The integral of Pvn outside Iε is at most ε, so its
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integral inside Iε is 1 − ε. By the continuity of φ on Iε, we can bound its values
by φ(x0)− δ ≤ φ(Iε) ≤ φ(x0) + δ, where δ goes to 0 with ε. Thus,

(1− ε)(φ(x0)− δ) ≤
∫
Iε

Pvn(x)φ(x) dµ ≤ (1− ε)(φ(x0) + δ).

As ε, δ → 0, the integral is sandwiched between the two limits, and approaches
φ(x0). The error term from outside Iε is vanishing with ε, so

lim
i→∞

∫ 1

0

Pvi(x)φ(x) dµ = φ(ξ(p̂)).

5 Conclusion

Proposition 5.1. µ� ν. If this is true, then subsets of ∂Γ with null ν-measure
are countable, or negligible with respect to µ. This improves the set of graphs
for which the above results hold. Indeed, if it is true, then we need not worry
about graphs with rays of width 1, which have ν-measure 0. That it should be
true can be seen by observing that it is equivalent to the question of whether
uncountable trees are transient. They should be, because the conductivities are
bounded above and below, and the number of edges facing downwards in such
a tree must dominate the number facing upwards at some point. On average,
the probability of going upwards should be less than 1/2, while the probability of
moving downward should be more than 1/2.

The results presented above require clarification in terms of the class of graphs
which can be considered, requirements on the path numberings ζ, and so forth.
The paper should be considered as a blueprint for more rigorous examination of
the issues.
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